

Name: _____

Date: _____

HW Math 12 Honors: Section 6.4 Polynomials with Complex Roots:

- When given a polynomial in the form $y = x^4 + 3x^3 + 5x^2 + 12x + 4$, how many roots are there? If some of the roots are complex, what do you know about these complex roots?
- Suppose you are given a polynomial $y = x^4 + Ax^2 + Bx + C$, where all the coefficients are real numbers. If one of roots is $z = 2 + 3i$ then find another root.
- Given the polynomial $y = x^3 + x^2 + Bx + C$, where one root is $z = 1 + \sqrt{2}i$, what are the other two roots and what is the value of "C"?
- Use synthetic division or long division to find the quotient and remainder.
$$(x^4 + 16x^3 + 67x^2 + 63x - 70) \div (x + 10)$$
- How can you tell if a polynomial function $P(x) = ax^3 + bx^2 + cx + d$ is divisible by $(x - e)$? What does it mean if the polynomial is divisible by the binomial factor? Explain:
- Given the polynomial function, which of the following will give you the sum of all the coefficients?
 $P(x) = x^n + Bx^{n-1} + Cx^{n-2} + Dx^{n-3} + \dots + E$:
i) $P(1)$ ii) $P(2)$ iii) $P(1) + 1$ iv) $P(0) + 1$
- The polynomial function below has a degree of 7 and has its roots shown. Suppose all roots are single roots, how many complex roots does it have? Explain and justify your answer:

8. Factor each of the polynomials and then solve for all roots:

a) $(x^2 + 1)(x^2 + 9) = 0$	b) $(x^2 + 10)(x^2 + 2x + 4) = 0$	c) $x^4 + 12x^2 + 35 = 0$
d) $(x - 1 + 3i)(x + 1 + 3i) = 0$	e) $x^3 + 3x^2 + x - 5 = 0$	f) $0 = x^3 + 3x^2 + 4x + 12$
g) $9x^3 + 2x + 1 = 0$	h) $x^4 + 9x^2 + 20 = 0$	i) $x^4 + 5x^2 - 24 = 0$

j) $x^4 + x^3 + 7x^2 + 9x - 18 = 0$	k) $8x^4 + 50x^3 + 43x^2 + 2x - 4 = 0$	l) $4x^4 - 4x^3 + 13x^2 - 12x + 3 = 0$
-------------------------------------	--	--

9. Given that the polynomial $f(x) = 12x^5 - 20x^4 + 19x^3 - 6x^2 - 2x + 1$ has roots at $x = \frac{1}{2}$ and $x = \frac{1}{3}$, find the other complex roots.

10. Given the function, how many roots are there? Find all the solutions and then indicate all NPV's if there are any.

$$\frac{(z^5 + z^4 + z^3 + z^2 + z^1 + 1)(z^7 + 1)}{z^5 + 1} = 0$$

11. Given the polynomial $P(x) = x^3 + 3x^2 + Bx + C$ with real coefficients and a complex root at $z = 1 - 4i$, find the coefficients "B" and "C".

12. Given the polynomial $P(x) = x^3 + Ax^2 + Bx + 24$ with real coefficients and a complex root at $z = 3 + 2i$, find the coefficients "A" and "B".

13. There are nonzero integers “a”, “b”, “r”, and “s” such that the complex number $r+si$ is a zero of the polynomial $P(x) = x^3 - ax^2 + bx - 65$. For each possible combination of “a” and “b”, let $p_{a,b}$ be the sum of the zeroes of $P(x)$. Find the sum of the $p_{a,b}$ ’s for all possible combinations of “a” and “b” [2013 AIME]

14. Let “S” be the set of all polynomials of the form $z^3 + az^2 + bz + c$, where “a”, “b”, and “c” are integers. Find the number of polynomials in “S” such that each of its roots “z” satisfies either $|z| = 20$ or $|z| = 13$ [2013 AIME II]

15. Let $P(x)$ be a polynomial with integer coefficients that satisfies $P(17) = 0$ and $P(24) = 17$. Given that $P(n) = n + 3$ has two distinct integer solutions n_1 and n_2 , find the product $n_1 \times n_2$ [AIME 2005]

16. For certain real values “a”, “b”, “c” and “d”, the equation $x^4 + ax^3 + bx^2 + cx + d = 0$ has four non-real roots. The product of two of the non real roots is $13 + i$ and the sum of the other two non real roots is $3 + 4i$. Find the value of “b”. [Hint: Since all the coefficients are real, the roots must come in conjugate pairs] Aime 1995

17. The polynomial $P(x) = (1 + x + x^2 + \dots + x^{17})^2 - x^{17}$ has 34 complex roots of the form $z_k = r_k [\cos(2\pi a_k) + i \sin(2\pi a_k)]$, $k = 1, 2, 3, \dots, 34$ with $0 < a_1 \leq a_2 \leq \dots \leq a_{34} \leq 1$ and $r_k > 0$.

Given that $a_1 + a_2 + a_3 + a_4 + a_5 = \frac{m}{n}$, where "m" and "n" are relatively prime positive integers, find "m" and "n" [2004 AIME 1]

18. The polynomial $f(z) = az^{2018} + bz^{2017} + cz^{2016}$ has real coefficients not exceeding 2019, and

$$f\left(\frac{1+\sqrt{3}i}{2}\right) = 2015 + 2019\sqrt{3}i. \text{ Find the value of } f(1) \text{ [AIME 2019]}$$

19. Let "P" be the product of the roots of $z^6 + z^4 + z^3 + z^2 + 1 = 0$ that have a positive imaginary part, and suppose that $P = r(\cos \theta^\circ + i \sin \theta^\circ)$ where $r > 0$ and $0^\circ < \theta < 360^\circ$. Find θ [AIME 1996]